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DESCRIPTION OF CREEP WITHIN THE FRAMEWORK

OF THE FIELD THEORY OF DEFECTS
Yu. V. Grinyaev and N. V. Chertova UDC 539.3

The creep laws are described within the framework of the field theory with the use of evolution
equations for the density flur of uniformly distributed defects. For the case of uniazial defor-
mation under constant stress, it is shown that a certain critical stress that has the sense of
creep stability limit exists and two deformation regimes can occur, depending on the magnitude
of the external load. The unstable-creep rupture time is determined for the system in the case
where the stresses are greater than the critical stress and the initial rate exceeds the unstable
stationary rate.

Introduction. The necessity of using materials at high temperatures and loads and the production of
new materials whose properties depend strongly on external conditions have motivated many experimental
and theoretical studies in the field of creep. By creep, deformation processes for which the stress—strain
relations contain the time explicitly or in terms of certain operators [1] are meant. Creep is typical of
materials of different physical nature (metals, alloys, rocks, plastics, etc.) at any temperatures (from cryogenic
temperatures to temperatures close to the melting point). Obviously, the creep laws and physical mechanisms
of this phenomenon are different for different materials and different cases of loading.

The physical theories of creep [2-4] that are based on the concept of crystal-lattice defects give deeper
insight into the phenomenon and describe many specific features observed. It is assumed in the above-
mentioned studies that elementary creep processes in solids at moderate temperatures are due mainly to
dislocation displacements. From the viewpoint of physical mesomechanics [5], a deformable solid is a complex
hierarchical system in which interacting defect structures of different scale level form upon deformation.

The behavior of the systems of different nature that include many interacting elements has been the
subject matter of synergetics [6]. In synergetics, the micro-, meso-, and macrolevels of description of the
system are distinguished. On the microscopic level, separate structural elements are studied by specifying
their location, velocities, and interactions. On the mesoscopic level, the variables relevant to an ensemble of
structural elements are introduced. When the system is described on the macrolevel, the mesoscopic level is
assumed to be the initial level, and methods of predicting the onset of macroscopic structures are developed.

The existing physical theories [2-4] study the creep phenomenon within the framework of the micro-
scopic description of a system in which separate noninteracting defects of the material are considered and, in
addition, their general contribution to the strain is determined. In the present study, the specific features of
creep are analyzed on the mesoscopic level, where a set of interacting defects is considered and its cooperative
properties are taken into account. An equation that relates the defect-flux rate to stresses and allows one
to investigate the creep phenomenon is obtained within the framework of the field theory of defects, which
describes the dynamics of a dislocation ensemble (7, 8]. This equation is used to investigate the specific
features of uniaxial deformation, since many results concerning the creep were obtained in experiments on
bars in tension.
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1. Dynamic Equations of a Dislocation Ensemble. Panin et al. [7, 8] suggested treating a
deformable solid with defects as a mixture of two, elastic and defect, continua. The elastic continuum is a
material medium that undergoes elastic distortions caused by external actions and material defects, and the
defect continuum is a mechanical field that transmits the interaction of material volumes and is a carrier of
energy and momentum.

Within the framework of this model, the dynamic equations of an elastic defect medium can be written
in the form

7]
BOiIy; = — B, De;Oroyj = —B En Lij — 0453 (1.1)
0
g P, = ;0. (1.2)
Here a;; = €;310k/ Z‘J"t is the dislocation-density tensor, I;; = —(9/ Bt)B}j-‘t —8; Vji“t is the dislocation flux density

tensor, o5 = Ciju (05" + B};}t) is the effective-stress tensor, P; = p(VS* + V;it) is the effective momentum,
p is the density of the medium, D and B are the constants of the model, Cjj;; is the elastic constant tensor,
and ey is the antisymmetric Levi-Civita tensor. The quantities a;;. I;;, 055, and P; are determined by
the components of elastic distortions caused by the external actions 35" and the material defects Gi%, the
rate of elastic displacements V**, and the velocity Vint due to defect displacements. Supplemented by the
geometrical relations of elastic continuum with defects [9] Orar; = 0 and (0/0t)ou; = eiOilij, Egs. (1.1)
constitute a complete set of dynamic equations of a dislocation ensemble that satisfies the compatibility
condition (1.2).

As shown in [7], in the absence of external actions, the internal stresses and the momentum are
determined by the Maxwell stress tensor and the density of field-momentum flux:

: i 5is
ot = D<akiakj - -;i Otklakl) + B<Iki1kj - —;]- IklIkl) + nli;.

int
pVi™ = Beiapnlin.

Here 7 is the viscosity coefficient and d;; is the Kronecker symbol. Taking these equalities into account, we
write the dynamic equations of a defect ensemble in the form

0 i
Oray; = 0, 5 % = eik1Ok11;, BOIy = —Beijagndin — pV,
’ (1.3)
15] 5ij 6ij ext
De;jy Oroy; = —B En Lij - D(akiakj -3 aklakl) - B(Ikifkj -3 IklIkl) —nlij — o35
This system allows us to investigate the dynamics of the dislocation ensemble for a given external action

determined by the quantities V;™** and o£¥*.

2. Dynamic Equations of an Ensemble of Uniformly Distributed Defects. Koneva and
Kozlov [10] analyzed the evolution of defect structures and showed that as the strain increases, the chaotic
distribution of defects observed at the yield point becomes a sequence of oriented and disoriented defect
substructures. In a continual description, the intensities of a field of chaotically distributed defects (o and
I) are independent of coordinates and correspond to the uniform distribution of defects. In this case, Eqgs.
(1.3) take the form

: 1)
Beianlin = —pVEe, 57 % = 0,

0 8ij i "
B 5 Li; + D(akiakj - g aklakl) + B<Ikiij - éj IklIkl) +nlij + o5t = 0.
The second equation of the system implies that the density of dislocations does not depend on time
when the material defects are distributed uniformly. Setting o = 0, we obtain
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B a I,'j + B(Ikifkj - % IkIIM) + T)Iij + O'f;-(t = 0; (2.1)
g 0
Iij = o i = ~% P (2.2)

where (3;; is the plastic distortion which determines the defect flux [9]. We confine our analysis to the case
of uniaxial loading. In the approximation of engineering theories that establish a relation between strains,

stresses, their rates, and time, only the components I1;; = —£;; and o1; in Eq. (2.1), whose tensor indices
are dropped below, are nonzero. As a result, we obtain the differential equation

d 1, 17 1

@38 TBCYEC

which relates the plastic-strain rate to stresses. Introducing the dimensionless variables v = (B/7n)¢, and
7 == (/B)t, we write this equation in the form

g; - 302 —v+5. (2.3)

3. Specific Features of Creep at Constant Stress. We assume that the differential equation (2.3)
describes the deformation of a solid in creep. We consider the simplest case ¢ = const, which corresponds to
the creep at constant stress. Setting the right side of Eq. (2.3) equal to zero, we determine the stationary

points at which the strain rate is constant and analyze their stability. The stationarity condition
fW)y=v?/2-v+8=0
yields the steady creep rates
v1=p=1+\/r——2_§, vm=g=1-+1-25.

Since the quantities 7, B, and o determining S are positive, the inequality 0 < ¢ < p holds.

Analyzing the diagram of the function f(v) and the phase pattern of the differential equation (2.3),
we infer that the stationary state g is stable and the state p is unstable. When the governing parameter
S determining the external action tends to 1/2, the stable and unstable states become close; these states
coincide for

S* =1/2, (3.1)

and disappear simultaneously for § > 1/2. Thus, 5* is the critical value of the governing parameter. For
S < 1/2, the behavior of the real system described by Eq. (2.3) becomes stable. The system goes to the
stationary state vo = ¢; thereby, the possibility of experimental determination of the unstable stationary
state vy = p is eliminated. For S > §*, an unstable creep regime with an increased rate occurs.

Let us consider the above results in greater detail. When S < S*, the solution of Eq. (2.3) has the
form

I

p—q lv(r)—

where C is an integration constant which is determined from the initial conditions v(0) = vg. As a result,

the solution can be written as follows:

p — gf(vo — p)/{vo — @)l exp[(p — q)7/2] (3.2)

1~ [(vo — p)/(vo — Q)lexp[(p— g)7/2] '
Figure 1 shows the evolution of the strain rate for S = 0.2. For small 7, the form of the function v(7)

is determined by the initial value vg. The following intervals are distinguished: 0 < vp < ¢q, ¢ < vg < p,

and vg > p. Figure la shows the curves v(7) calculated for the values of vy that belong to the first two

intervals. For vg > p, the function v(7) shown in Fig. 1b has a singularity of the type 1/z for 2 = 0, where

z=1-[(vo — p)/(vo — q)) exp [(p — ¢)7/2]. Consequently, the rupture time at which the strain rate tends to

infinity is determined from the formula
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The time 7, decreases as the external load and the initial loading rate increase. For large values of 7, the
strain rate does not depend on vy; as T — co, we have v(7) — ¢, i.e., the creep becomes stable.
For S > S*, the solution of Eq. (2.3) can be written as follows:

() n+ a? (n? + a?) cos (at/2)
v(r) = - ,

n n(cos (ar/2) — (n/a)sin (ar/2))
where 2a = p — q and n = 1 — vg. Figure 2 shows the solution (3.3) for S = 0.6 and vp = 0.7. Evidently, the
evolution time until the real system disintegrates is restricted by the condition

cos (ar/2) — (n/a)sin(at/2) =0 (3.4)

(3.3)

under which the strain rate tends to infinity. According to (3.4), the “lifetime” of the system before disinte-
gration is 7 = (2/a)(arctan (a/n) + 7).

An analysis of the last relations shows that 7 decreases as § and vg increase. Figure 3 shows the
creep strain versus the time for different levels of external load and vy = 0.7, which satisfies the condition
q(S) <wo < p(S).

4. Creep Curves. Experimental results are generally represented as a creep curve that characterizes
the strain variation with time. Three segments are distinguished on the creep curve {1, 11, 12]. In the first
segment, the strain rate gradually decreases to the minimum value, which remains unchanged in the second
segment. In the third segment, the strain rate increases, which results in the rupture of a specimen. Within
the framework of our approach, the corresponding relations can be obtained by integrating expressions (3.2)
and (3.3) over the time. The creep curve is described by the relations
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s(r)=eo+pr+2In|(p—q)/{p—vo— (g—vo)exp[(p — q)7/2]}], (4.1)
e(r)=¢eo+7—2In|cos(ar/2) — (n/a)sin(ar/2)] (4.2)

for § < 8" and § > S, respectively. Here eg = <(0). It follows from (4.1) that () * C +¢7 as 7 — oo (C
is a constant). This shows that a stationary deformation regime with the constant rate ¢ exists for S < S*.
As was noted above, for S > S*, the time before rupture is restricted by condition (3.4). In the limit where
7 is small and subject to the condition a7 < 1, expressions (4.1) and (4.2) can be written in the form
e(r) = g + voT.

Figure 4 shows creep curves calculated for S = 0.15 < S* and vp = 0.7 (2) and § = 0.6 > S* and
vo = 0.3 (b). In both cases, the initial strain was taken to be 0.01%.

5. Discussion of Results. A creep analysis on the basis of the equation that describes the evolution
of the flux of uniformly distributed defects shows that the character of the process depends strongly on the
external load S and the initial strain rate vy. For a constant tensile stress, the stable creep region is restricted
by the conditions 0 < § < §* and 0 < vy < p, where S* has the sense of the stable creep limit and is
determined, according to (3.1), by the material parameters that describe the inertia of an ensemble of defects
and the viscosity of the medium. As follows from the strain-rate evolution analysis, this quantity increases
for small 7 and 0 < vp < ¢ and decreases for ¢ < vp < p to the minimum stationary value ¢(S) for S < S*.
By virtue of the fact that the creep rate in the first segment of the experimental curves gradually decreases
to the minimum rate corresponding to steady creep, one should use vy > ¢ as the initial values of v(7).

The resulting expressions for v(7) agree with the well-known fact that the creep rate increases with
stresses [v1(S1) > v2(S2) for S > S2] {12] and also describe the condition ¢(S) = 0 for S = 0 taken into
account when this quantity is determined within the framework of phenomenological theories [11].

For § < §*, the stages of unsteady and steady creep can be identified on the creep curve [1, 11, 12].
The above relation for £(7) is not valid for the third segment of the creep diagram, where the strain rate
increases and the deformation terminates with rupture of the specimen. However, the experimental creep
curves were obtained at constant load. Rabotnov [1] and Kachanov [12] consider that the accelerated creep
is absent up to the moment of specimen rupture in the case of constant stress considered.

Kachanov [12] described the creep curve for S > S*. Pointing out the diversity of creep relations,
he considers that the first segment, where the strain rate decreases. can be absent on the creep curve; after
a short period of almost constant rate, the creep rate increases. i.e., the diagram contains only the third
segment. An analysis of creep within the framework of the field theory of defects shows that the different
creep regimes observed in reality occur in the specimen at different levels of applied load.
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